Как определить коэффициент местного сопротивления. Определение коэффициента местного сопротивления. Местные гидравлические сопротивления задвижки

Местными гидравлическими сопротивлениями называются участки трубопроводов (каналов), на которых поток жидкости претерпевает деформацию вследствие изменения размеров или формы сечения, либо направления движения. Простейшие местные со-противления можно условно разделить на расширения, сужения, которые могут плавными и внезапными, и повороты, которые также могут плавными и внезапными.

Но большинство местных сопротивлений являются комбинациями указанных случаев, так как поворот потока может привести к изменению его сечения, а расширение (сужение) потока — к отклонению от прямолинейного движения жидкости (см. рисунок 3.21, б). Кроме того, различная гидравлическая арматура (краны, вентили, клапаны и т.д.) практически всегда является комбинацией простейших местных сопротивлений. К местным сопротивлениям также относят участки трубопроводов с разделением или слиянием потоков жидкости.

Необходимо иметь в виду, что местные гидравлические сопротивления оказывают существенное влияние на работу гидросистем с турбулентными потоками жидкости. В гидросистемах с ламинарными потоками в большинстве случаев эти потери напора малы по сравнению с потерями на трение в трубах. В данном разделе будут рассмотрены местные гидравлические сопротивления при турбулентном режиме течения.

Потери напора в местных гидравлических сопротивлениях называются местными потерями .

Несмотря на многообразие местных сопротивлений, в большинстве из них потери напора обусловлены следующими причинами:

Искривлением линий тока;

Изменением величины скорости вследствие уменьшения или увеличения живых сечений;

Отрывом транзитных струй от поверхности, вихреобразованием.

Несмотря на многообразие местных сопротивлений, в большинстве из них изменение скоростей движения приводит к возникновению вихрей, которые для своего вращения используют энергию потока жидкости (см. рисунок 3.21, б). Таким образом, основной причиной гидравлических потерь напора в большинстве местных сопротивлений является вихреобразование. Практика показывает, что эти потери пропорциональны квадрату скорости жидкости, и для их определения используется формула Вейсбаха

При вычислении потерь напора по формуле Вейсбаха наибольшей трудностью является определение безразмерного коэффициента местного сопротивления . Из-за сложности процессов, происходящих в местных гидравлических сопротивлениях, теоретически найти удается только в отдельных случаях, поэтому большинство значений этого коэффициента получено в результате экспериментальных исследований. Рассмотрим способы определения коэффициента для наиболее распространенных местных сопротивлений при турбулентном режиме течения.


Для внезапного расширения потока (см. рисунок 3.21, б) имеется теоретически полученная формула Борда для коэффициента , который однозначно определяется соотношением площадей до расширения (S 1) и после него (S 2) :

Следует отметить частный случай, когда жидкость вытекает из трубы в бак, т. е. когда площадь сечения потока в трубе S 1 значительно меньше таковой в баке S 2 . Тогда из формулы (3.35) следует, что для выхода трубы в бак = 1. Для оценки коэффициента потерь напора при внезапном сужении используется эмпирическая формула, предложенная И.Е. Идельчиком, которая также учитывает соотношение площадей до расширения (S 1) и после него (S 2) :

. (3.36)

Для внезапного сужения потока тоже необходимо отметить частный случай, когда жидкость вытекает из бака по трубе, т. е. когда площадь сечения потока в трубе S 2 значительно меньше таковой в баке S 1 . Тогда из (3.36) следует, что для входа трубы в бак = 0,5.

В гидравлических системах достаточно часто встречаются плавное расширение потока (рисунок 3.21, в) и плавное сужение потока (рисунок 3.21, г ). Расширяющееся русло в гидравлике принято называть диффузором, а сужающееся - конфузором. При этом, если конфузор выполнен с плавными переходами в сечениях 1 "-1 2 "-2 ", то его называют соплом. Эти местные гидравлические сопротивления могут иметь (особенно при малых углах α) достаточно большой длины l . Поэтому кроме потерь из-за вихреобразования, вызванного изменением геометрии потока, в этих местных сопротивлениях учитывают потери напора на трение по длине.

Значения коэффициентов для плавного расширения и плавного сужения находят с введением поправочных коэффициентов в формулы (3.35) и (3.36): и .

Поправочные коэффициенты k p и k c имеют численные значения меньше единицы, зависят от углов α, а также от плавности переходов в сечениях и 1 "-1 " и 2 "-2 ". Их значения приводятся в справочниках.

Весьма распространенными местными сопротивлениями являются также повороты потоков. Они могут быть с внезапным поворотом трубы (рисунок 3.21, д ) или с плавным поворотом (рисунок 3.21, е ).

Внезапный поворот трубы (или колено) вызывает значительные вихреобразования и поэтому приводит к существенным потерям напора. Коэффициент сопротивления колена определяется в первую очередь углом поворота δ и может быть выбран из справочника.

Плавный поворот трубы (или отвод) существенно снижает вихреобразование и, следовательно, потери напора. Коэффициент для данного сопротивления зависит не только от угла поворота δ, но и от относительного радиуса поворота R/d . Для определения коэффициента существуют различные эмпирические зависимости, например, , (3.37) либо находятся в справочной литературе.

Коэффициенты потерь других местных сопротивлений, встречающихся в гидравлических системах, также могут быть определены по справочнику.

Следует иметь в виду, что два или более гидравлических сопротивления, установленных в одной трубе, могут оказывать взаимное влияние, если расстояние между ними менее 40d (d - диаметр трубы).

Гидравлические сопротивления в трубопроводах

Расчет гидравлических сопротивлений является одним из важнейших вопросов гидродинамики, он необходим для определения потерь напора , расхода энергии на их компенсацию и подбора побудителя тяги.

Потери напора в трубопроводах обусловлены сопротивлением трения и местными сопротивлениями. Они входят в уравнение Бернулли для реальных жидкостей.

a) Сопротивление трения существует при движении реальной жидкости по всей длине трубопровода и зависит от режима течения жидкости.

b) Местные сопротивления возникают при любых изменениях скорости потока по величине и направлению (вход в трубу и выход, отводы, колена, тройники, арматура, расширения, сужения).

Потеря напора на трение

1) Ламинарный режим .

При ламинарном режиме может быть рассчитано теоретически с использованием уравнения Пуазейля:

;

По уравнению Бернулли для горизонтального трубопровода постоянного сечения напор, теряемый на трение:

;

;

;

Подставляя значение в уравнение Пуазейля и заменяя получаем:

;

;

;

Таким образом, при ламинарном движении по прямой круглой трубе:

;

Величину называют коэффициентом гидравлического трения.

уравнение Дарси-Вейсбаха:

;

Это уравнение может быть получено и другим путем – с помощью теории подобия.

Известно, что

;

Для ламинарного потока найдено: .

;

;

уравнение Дарси-Вейсбаха:

;

Определим потерю давления: .

уравнение Дарси-Вейсбаха:

Подставив значение для ламинарного режима, получим:

;

Таким образом, для ламинарного режима:

уравнение Гагена-Пуазейля:

;

Это уравнение справедливо при и особенно важно при исследования течения жидкости в трубах малого диаметра, а также в капиллярах и порах

Следовательно, для установившегося ламинарного движения:

Для некруглого сечения: , где зависит от формы сечения:

;

Выражение называется коэффициентом сопротивления.

Следовательно:

;

;

2) Турбулентный режим .

Для турбулентного режима также справедливо уравнение Дарси-Вейсбаха:

;

Однако, коэффициент трения не может быть в этом случае определен теоретически из-за сложности структуры турбулентного потока. Расчетные уравнения для определения получают при обобщении экспериментальных данных методами теории подобия.

a) Гладкие трубы .

;

;

;

Следовательно, при турбулентном течении в гладких трубах:

формула Блазиуса:

b) Шероховатые трубы .

Для шероховатых труб коэффициент трения зависит не только от , но и от шероховатости стенок.

Характеристикой шероховатых труб является относительная шероховатость : отношение средней высоты выступов (бугорков) на стенках трубы (абсолютной шероховатости) к эквивалентному диаметру трубы:

Пример ориентировочных значений абсолютной шероховатости:

· Трубы стальные новые ;

· Трубы стальные при незначительной коррозии ;

· Стеклянные трубы ;

· Бетонные трубы ;

Влияние шероховатости на величину определяется соотношением между абсолютной шероховатостью и толщиной ламинарного подслоя .

1. При , когда жидкость плавно обтекает выступы, влиянием шероховатости можно пренебречь, и трубы рассматриваются как гидравлически гладкие (условно) – зона гладкого трения .

2. При возрастании величина уменьшается, и потери на трение возрастают вследствие вихреобразования около выступов шероховатости – зона смешанного трения .

3. При больших значениях , перестает зависеть от и определяется лишь шероховатостью стенок , т.е. режим автомоделен по - автомодельная зона .

Необходимо отметить, что, поскольку , труба может быть шероховатой при одном расходе жидкости и гидравлически гладкой при другом.

Для данной трубы приближенно:

;

Для шероховатых труб при турбулентном движении применимо следующее уравнение:

;

Для области гладкого трения – или по уравнению Блазиуса, или по уравнению:

;

;

Разделив на 1,8, можно получить формулу Филоненко.

формула Филоненко:

;

Для автомодельной области :

;

Практически расчет проводится по номограммам. Зависимость коэффициента трения от критерия и степени шероховатости - рис 1.5, Павлов, Романков.

При неизотермическом течении меняется вязкость жидкости по сечению трубы, меняется профиль скоростей и .

В уравнения для определения (кроме автомодельной области) вводят специальные поправочные множители (Павлов, Романков)

Потеря напора на местные сопротивления

В различных местных сопротивлениях измерение скорости происходит:

а) по величине =>

б) по направлению =>

в) по величине и направлению =>

Кроме потерь, связанных с трением, при этом возникают дополнительные потери напора (образование завихрений из-за действия инерционных сил (при изменении направления), образование завихрений из-за обратных токов жидкости и др. (при внезапном расширении)).

Потери напора на местные сопротивления выражают через скоростной напор. Отношение потери напора в данном местном сопротивлении к скоростному напору в нём называется коэффициентом местного сопротивления:


Для всех местных сопротивлений трубопровода:

(суммируется при наличии прямых участков длиной не менее 5d)

Коэффициенты приводятся в таблицах, например:

· вход в трубу ;

· выход из трубы

· задвижка до => ;

· кран , =>

· вентиль =>

· вентиль =>

Полная потеря напора

Величина выражается в метрах столба жидкости и не зависит от рода жидкости, а величина потери давления зависит от плотности жидкости.

Гидравлические расчёты аппаратов в принципе не отличаются от расчётов трубопроводов.

Расчёт диаметра трубопровода

Стоимость трубопроводов составляет значительную часть капитальных вложений и большие эксплуатационные расходы. В соответствии с этим большое значение имеет правильный выбор диаметра трубопровода.

Величина диаметра определяется скоростью жидкости. Если выбрана большая скорость, то диаметр трубопровода уменьшается, это обеспечивает:

Уменьшение расхода металла;

Уменьшение затрат на изготовление, монтаж и ремонт.

Однако вместе с этим увеличивается перепад давлений, необходимый для перемещения жидкости. Это требует больших затрат на перемещение жидкости.

Оптимальный диаметр должен обеспечивать минимум эксплуатационных расходов . (сумма стоимости энергии, амортизации и ремонта).

Годовые затраты на эксплуатацию => М (руб/год)=А+Э;

А – затраты на амортизацию (стоимость/годы) и ремонт;

Э – стоимость энергии.

На основании технико-экономических соображений рекомендуется следующие пределы скоростей движения:

Капельные жидкости :

Самотёком = 0,2 – 1 м/с

При перекачке = 2 – 3 м/с

Газы :

При естественной тяге = 2 – 4 м/с

При небольшом давлении (вентилятор) = 4 – 15 м/с

При большом давлении (компрессор) = 15 – 25 м/с

Пары :

Насыщенные водяные пары = 20 – 30 м/с

Перегретые водяные пары = 30 – 50 м/с.

Обычно потери давления должны составлять не более 5-15% от величины давления нагнетания.

Оптимальный диаметр трубопровода должен соответствовать ГОСТу. В ГОСТе установлено понятие условного диаметра Dy . Это наминальный внутренний диаметр трубопровода. По этому диаметру подбираются также соединительные части – фланцы, тройники, заглушки и др., а так же арматура: краны, вентили, задвижки и т.д.

Каждому условному диаметру соответствует определённый наружный диаметр, при этом толщина стенки может быть различной. Например (мм) (могут быть и отклонения от этой таблицы).

Материал трубопровода

Применяют различные материалы, что связано с различной температурой среды и агрессивностью.

Чаще всего используют стальные трубы:

Чугунные трубы до 300 0 С

Применяют также другие металлические трубы => медные, алюминиевые, свинцовые, титановые и др. И неметаллические => полиэтиленовые, фторопластовые, керамические, асбоцементные, стеклянные и др.

Способы соединения трубопроводов

а) Неразъёмные – сварные

б) Разъёмные

Фланцевые

Резьбовые

Раструбные (применяются для чугунных, бетонных и керамических труб)

Арматура трубопроводов

1. Конденсатоотводчики .

В паровых и газовых коммуникациях вследствие охлаждения всегда может происходить конденсация воды, смолы или другой жидкости, содержащейся в газе в виде пара. Накопление конденсата очень опасно, так как, двигаясь по трубам с большой скоростью (), жидкостная пробка, обладающая большой инерцией, будет вызывать сильнейшие гидравлические удары . Они расшатывают трубопроводы и могут вызывать их разрушение.

Поэтому газопроводы монтируют с небольшим уклоном, а в наинизшей точке ставится конденсатоотводная трубка.

Гидравлический затвор. Для вакуумных трубопроводов =>

через барометрическую трубу.

При больших давлениях используют специальные конструкции конденсатоотводчиков (рассматриваются далее).

2. Вентили.

1 - корпус;

3 - клапан;

4 - шпиндель;

5 - сальник.

Клапан притёрт к седлу и плотно перекрывает движение среды.

Шпиндель имеет нарезную часть и соединён с маховиком. Герметичность обеспечивается сальником.

Вентили являются запорно-регулирующей арматурой, т.е. позволяют плавно регулировать расход.

3. Краны.

В корпусе вращается пришлифованная коническая или шаровая пробка со сквозным отверстием. Краны используют преимущественно как запорную арматуру. Регулировать расход сложно.

4. Задвижки.

Шиберная

Бывают плоско-параллельные и клиновые задвижки. Перемещение шибера производится с помощью шпинделя перпендикулярно оси трубопровода и происходит его перекрывание.

Эта арматура запорная и регулирующая. Для целей автоматизации привод может быть пневматическим, электрическим, гидравлическим и т.д.

5. Существует также предохранительная и защитная арматура (предохранительные и обратные клапаны), контрольная арматура (указатели уровня, пробные краны и т.д.)

Вся арматура имеет индексацию:

например: 15 кч 2бр.

15=>вентиль; кч=>ковкий чугун (материал корпуса); 2=>номер модели по каталогу; бр=>уплотнительная поверхность из бронзы.

Арматура выбирается в зависимости от давления в трубопроводе.

Различают:

1) Рабочее давление – наибольшее избыточное давление, при котором арматура работает длительное время при рабочей температуре среды .

2) Условное давление – наибольшее давление (изб.), создаваемое средой при 20 0 С.

Существует ряд условных давлений, согласно которому изготовляют арматуру:

P y =1;2,5;4;6;10;16;25;40;64;100;160;200;250;320;400…атм.

Выбор P y осуществляется по таблицам в зависимости от марки стали, наибольшей температуры среды и рабочего давления.

Пример : Сталь Х12H10T

t среды = 400 0 С P раб =20атм: P y =25атм

P раб =80атм: P y =100атм

t среды = 660 0 С P раб =20атм: P y =64атм

P раб =80атм: P y =250атм

Местные сопротивления вызываются фасонными частями, арматурой, другим оборудованием трубопроводных сетей, которые изменяют величину или направление скорости движения жидкости на отдельных участках, что всегда связано с появлением дополнительных потерь напора.

Потери напора на местных сопротивлениях определяются по формуле Вейсбаха

где – коэффициент местного сопротивления, который зависит от вида сопротивления и определяется опытным путем.

Основные виды местных потерь напора можно условно разделить на следующие группы:

  • потери, связанные с изменением живого сечения потока (резкое или постепенное расширение и сужение потока);
  • потери, вызванные изменением направления потока, его поворотом (поворот трубы);
  • потери, связанные с протеканием жидкости через арматуру различного типа (вентили, краны, клапаны, сетки);
  • потери, возникшие вследствие отделения одной части потока от другой или слияния двух потоков (тройники, крестовины и т.д.).

Рассмотрим некоторые виды местных сопротивлений.

Резкое расширение трубопровода.

Как показывают наблюдения, поток, выходящий из узкой трубы, отрывается от стенок и дальше движется в виде струи, отделенной от остальной жидкости поверхностью раздела (см. рис. 4.14). На поверхности раздела возникают вихри, которые отрываются и переносятся далее транзитным потоком. Между транзитным потоком и водоворотной зоной происходит массообмен, но он незначителен. Струя постепенно расширяется и на некотором расстоянии от начала расширения заполняет все сечение трубы. Вследствие отрыва потока и связанного с этим вихреобразования на участке трубы между сечениями 1-1 и 2-2 наблюдаются значительные потери напора.

Рис. 4.14. Резкое расширение трубопровода

Если принять ряд допущений, то теоретически можно доказать, что потери напора при резком расширении

формула Борда ,

где и – средние скорости в трубе до расширения и после. Эту формулу можно привести к другому виду:

.

Если принять

коэффициент местного сопротивления при резком расширении, то формула Борда принимает следующий вид:

Постепенное расширение.

Рис. 4.15. Постепенное расширение трубопровода

Если расширение происходит постепенно (см. рис. 4.15), то потери напора значительно уменьшаются. При течении жидкости в диффузоре скорость потока постепенно уменьшается, уменьшается кинетическая энергия частиц, но увеличивается градиент давления. При некоторых значениях угла расширения α частицы у стенки не могут преодолеть увеличивающееся давление и останавливаются. При дальнейшем увеличении угла частицы жидкости могут двигаться против основного потока, как при резком расширении. Происходит отрыв основного потока от стенок и вихреобразование. Интенсивность этих явлений возрастает с увеличением угла α и степенью расширения .

Потерю напора в диффузоре можно условно рассматривать как сумму потерь на трение и расширение. При небольших углах α возрастают потери по длине, а сопротивление на расширение становится минимальным. При больших углах α наоборот возрастает сопротивление на расширение. Коэффициент сопротивления диффузора можно определить по следующей формуле

,

где k – коэффициент смягчения, который зависит от угла α, и его значения приводятся в справочниках

Внезапное сужение.

При внезапном сужении потока (см. рис. 4.16) также образуются водоворотные зоны в результате отрыва от стенок основного потока, но они значительно меньше, чем при резком расширении трубы, поэтому и потери напора значительно меньше. Коэффициент местного сопротивления на внезапное сужение потока можно определить по формуле

Рис. 4.16. Внезапное сужение трубопровода

В случае присоединения трубы к резервуару можно принять =, тогда .

Постепенное сужение (конфузор).

Величина сопротивления конфузора будет зависеть от угла конусности конфузора θ. Коэффициент сопротивления можно определить по формуле

,

где , приводится в справочниках.

Поворот трубы (колено).

В результате искривления потока на вогнутой стороне внутренней поверхности трубы давление больше, чем на выпуклой. В связи с этим жидкость движется с различной скоростью, что способствует отрыву от стенок пограничного слоя и потерям напора (см. рис. 4.17). Величина коэффициента местного сопротивления зависит от угла поворота θ, радиуса поворота R , формы поперечного сечения и приводится в справочниках. Для круглого сечения трубы при θ = 90º. коэффициент сопротивления можно определить по формуле

Рис. 4.17. Плавный поворот трубопровода

.

Другие виды местных сопротивлений.

Коэффициенты местных сопротивлений для большинства сопротивлений приводятся в справочниках, их величина зависит от конструкции. Для ориентировочных расчетов можно пользоваться следующими коэффициентами местного сопротивления:

  • задвижка при полном открытии – 0,15;
  • вход в трубу при острых кромках – 0,5;
  • вентиль с косым затвором при полном открытии (рис. 4.18) – 3;
  • симметричный тройник – 1,5.

ОПРЕДЕЛЕНИЕ

Гидравлическим сопротивлением называют потери удельной энергии при переходе ее в теплоту на участках гидравлических систем, которые вызваны вязким трением.

При этом эти потери делят на:

  • потери, возникающие при равномерном течении вязкой жидкости по прямой трубе, имеющей постоянное сечение. Это так называемые, потери на трение по длине, которые пропорциональны длине трубы. Сопротивление по длине вызвано силами вязкого трения;
  • потери, которые порождаются местными гидравлическими сопротивлениями, например, изменение формы или (и) размера канала, которые изменяют поток. Эти потери называют местными. Местные сопротивления объясняются изменениями скорости потока по модулю и направлению.

Потери в гидравлике измеряют в единицах длины, когда говорят о потери напора () или в единицах давления ().

Коэффициент Дарси при ламинарном течении жидкости

Если жидкость по трубе течет равномерно, то потери напора по длине () находят при помощи формулы Дарси — Вейсбаха. Эта формула является справедливой для круглых труб.

где — коэффициент гидравлического сопротивления (коэффициент Дарси), — ускорение свободного падения, d — диаметр трубы. Коэффициент гидравлического сопротивления () величина безразмерная. Этот коэффициент связан с числом Рейнольдса. Так для трубы в виде круглого цилиндра коэффициент гидравлического сопротивления считают равным:

При ламинарном течении для нахождения гидравлического трения при Re2300 применяют формулу:

Для труб, поперечное сечение которых отличается от круга коэффициент гидравлического трения принимают равным:

где A=57, если сечение канала квадрат. Все приведенные выше формулы справедливы при ламинарном течении жидкости.

Коэффициент гидравлического сопротивления при турбулентном течении

Если течение является турбулентным, то аналитического выражения для коэффициента сопротивления нет. Для такого движения жидкости коэффициент сопротивления как функцию от числа Рейнольдса получают эмпирически. Для круглой цилиндрической гладкой трубы рассматриваемый коэффициент при рассчитывается по формуле Блаузиуса:

При турбулентном движении жидкости коэффициент гидравлического трения зависит от характера движения (числа Рейнольдса) и от качества (гладкости) стенок труб. Шероховатость труб оценивают при помощи некоторого параметра, который носит название абсолютной шероховатости ().

Местные сопротивления

Местные сопротивления порождают изменения модуля и направления скорости движения жидкости на отдельных участках трубы, и это связывается с дополнительными потерями напора.

Коэффициентом местного сопротивления называют безразмерную физическую величину, часто обозначаемую как , равную отношению потери напора в рассматриваемом местном сопротивлении () к скоростному напору ():

Величину определяют экспериментально.

Если скорость течения жидкости во всем сечении постоянна и равна , то коэффициент местного сопротивления можно определить как:

где — энергия торможения единицы объема потока относительно трубы.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Каким будет коэффициент гидравлического сопротивления при турбулентном течении воды в гладкой цилиндрической трубе, если внутренний диаметр трубы равен 12 мм, расход воды . Температура воды 40 o C.
Решение Найдем скорость течения жидкости в трубе как:

Вычислим скорость:

При движении реальных жидкостей кроме потерь на трение по длине трубопровода, возникающих из-за вязкости жидкости, могут возникать потери напора, связанные с наличием местных сопротивлений (краны, задвижки, сужения, расширения, повороты трубопроводов и проч.), которые вызывают изменения скорости движения или направления потока.

Потери напора в местных сопротивлениях определяются по формуле

где ξ – коэффициент местных потерь; – скоростной напор; – средняя скорость.

Коэффициентом местных потерь ξ называют отношение потери напора в данном местном сопротивлении к скоростному напору

В большинстве случаев диаметр трубопровода до местного сопротивления и после него бывает разным, а поэтому и скорости движения жидкости при этом разные (рис. 6.21). Очевидно, что и коэффициенты местных потерь, отнесенные к скоростному напору до и после местного сопротивления, будут различными. Поэтому при пользовании гидравлическими справочниками необходимо всегда обращать внимание, к какому скоростному напору отнесен коэффициент Обычно ξ относят к скоростному напору за местным сопротивлением.

Рис. 6.21.

В некоторых случаях удобно определять местные сопротивления через так называемую эквивалентную длину местного сопротивления. Эквивалентная длина местного сопротивления – это такая длина прямого трубопровода, на которой происходит такая же потеря напора , как и в данном местном сопротивлении.

Эквивалентную длину можно определить из равенства

Понятие эквивалентной длины позволяет ввести понятие о приведенной длине трубопровода

где l – действительная длина трубопровода.

Коэффициент местных потерь ξ в общем случае зависит от формы местного сопротивления, числа Re, шероховатости поверхности, а для запорных устройств также от степени их открытия, т.е.

где симплексы характеризуют форму местного сопротивления, в том числе и степень открытия в случае запорного устройства.

Ввиду большой сложности происходящих в местных сопротивлениях явлений в настоящее время нет надежных методов теоретического определения коэффициента ξ. Он определяется в основном экспериментально. Имеется попытка теоретически обосновать коэффициент местных потерь на случай внезапного расширения трубопровода (рис. 6.22). Используя аналогию потерь энергии при внезапном расширении с неупругим ударом твердых тел, Ж. III. Борда из теоремы о приращении количества движения и уравнения Бернулли вывел формулу для местных потерь при внезапном расширении потока в виде

где – скорости потока до и после внезапного расширения, т.е. потеря напора при внезапном расширении равна скоростному напору потерянной скорости, где потерянная скорость. Это утверждение представляет так называемую теорему Борда Карно. Однако более детальный анализ явлений показывает, что аналогия потерь напора при внезапном расширении с потерями энергии при неупругом ударе твердых тел далеко неполная. Опытом, в частности, подтверждается, что потери напора, даваемые теоремой Борда – Карно, получаются завышенными. Поэтому на основании теоретических соображений и эксперимента предложено эту потерю определять по формуле

где k – коэффициент, определяемый опытным путем.

Рис. 6.22.

Рассмотрим отдельные практически важные типы местных сопротивлений.

(см. рис. 6.22).

Хотя аналогия внезапного расширения потока с неупругим ударом не может служить основой для строгого теоретического обоснования и объяснения физического смысла явления, в первом приближении она достаточна. Благодаря неупругости удара механическая энергия рассеивается и превращается во внутреннюю энергию жидкости. Этим и объясняется основная доля потерь при внезапном расширении, которые подсчитываются по формуле (6.26).

Уравнение неразрывности потока для несжимаемой жидкости имеет вид

Подставляя выражение (6.28) в формулу (6.26), получаем

(6.29)

Сравнивая формулы (6.29) и (6.25), находим

Выразим из (6.27):

Подставляя выражение (6.31) в формулу (6.26), получаем

(6.32)

Сравнивая формулы (6.32) и (6.25), находим

Таким образом, по формулам (6.29), (6.32) можно определить потери напора в местном сопротивлении в случае известных скоростейили. Для приближенных расчетов коэффициент k можно принять равным 1.

2. Выход из трубы в резервуар больших размеров (рис. 6.23).

Рис. 6.23.

В данном случае площадь сечения резервуара поэтому

Тогда из формулы (6.30) следует

(рис. 6.24).

Рис. 6.24.

В данном случае происходит внезапное увеличение скорости. Удара при этом в плоскости перехода сечения не происходит. Но на некотором расстоянии ниже по течению происходит сжатие струи (сечение с – с), а затем переход от сжатого сечения к нормальному. Этот переход можно рассматривать как удар, что и служит причиной потерь напора.

Потери напора при внезапном сужении значительно меньше потерь напора при внезапном расширении. Коэффициент ξ здесь зависит от соотношения . Найденные опытным путем значения ξ, приведены в табл. 6.1.

Таблица 6.1

Значения ξ при внезапном сужении

4. Постепенное расширение потока (диффузор) (рис. 6.25).

Рис. 6.25.

При малых углах течение в диффузоре происходит безотрывно. При углах происходит отрыв потока от стенки. Это объясняется тем, что в диффузоре происходит увеличение давления в направлении движения, вызываемое уменьшением скорости вследствие расширения канала. Частицы жидкости, движущейся у стенки, сильно затормаживаются силами вязкости, и в определенной точке их кинетическая энергия становится недостаточной для преодоления все возрастающего давления. Поэтому скорость жидкости в пристенном слое в такой точке обращается в нуль, а за этой точкой появляются обратные течения – отрыв потока.

Если безотрывное течение в диффузоре происходит практически без потерь, то течение с отрывом сопровождается значительными потерями энергии на вихреобразование.

Зависимость имеет вид, представленный на рис. 6.26.

Рис. 6.26.

При угле коэффициент потерь достигает максимума. Причем при угле потери напора превосходят потери при внезапном расширении потока (). Поэтому вместо переходов в виде диффузоров с угломнужно применять внезапное расширение как переход с меньшими потерями напора.

Для данного местного сопротивления коэффициент ξ будет функцией только от числа Re. В зависимости от влияния числа Re на коэффициент ξ режимы движения жидкости могут быть разделены на следующие зоны.

1. Движение в местном сопротивлении и в трубопроводе ламинарное.

Коэффициент местных сопротивлений в этом случае определяется по формуле

где А –

то, учитывая формулу (6.33), будем иметь где

Следовательно, потери напора пропорциональны первой степени скорости.

2. Движение в трубопроводе без местного сопротивления ламинарное, а с местным сопротивлением – турбулентное. В этом случае

где В – коэффициент, зависящий от типа местного сопротивления.

Потери напора в данном случае определяют по формуле

3. Движение в трубопроводе без местного сопротивления и при наличии его турбулентное при небольших числах Re > 2300.

Формула для коэффициента местного сопротивления имеет вид

где С – коэффициент, зависящий от типа местного сопротивления.

Подставляя последнее соотношение в формулу (6.34), получаем

4. Развитое турбулентное течение при больших числах Рейнольдса.

Коэффициент ξ здесь не зависит от числа Рейнольдса, и местные потери напора пропорциональны квадрату скорости (квадратичная зона)

Коэффициенты А, В, С для различных типов местных сопротивлений приводятся в учебниках по гидравлике и гидравлических справочниках .